
Hamming Quasi-Cyclic (HQC)

22/08/2025

Submitters (by joining date then alphabetical order):

• Philippe Gaborit (University of Limoges, FR)
• Carlos Aguilar-Melchor (SandboxAQ, USA)
• Nicolas Aragon (Naquidis Center, FR)
• Slim Bettaieb (Technology Innovation Institute, UAE)
• Loïc Bidoux (Technology Innovation Institute, UAE)
• Olivier Blazy (Ecole Polytechnique, FR)
• Jean-Christophe Deneuville (ENAC, University of Toulouse, FR)
• Edoardo Persichetti (Florida Atlantic University, USA)
• Gilles Zémor (IMB, University of Bordeaux, FR)
• Jurjen Bos (Worldline, NL)
• Arnaud Dion (ISAE-SUPAERO, University of Toulouse, FR)
• Jérôme Lacan (ISAE-SUPAERO, University of Toulouse, FR)
• Jean-Marc Robert (University of Toulon, FR)
• Pascal Véron (University of Toulon, FR)
• Paulo L. Barreto (University of Washington Tacoma, USA)
• Santosh Ghosh (Intel, USA)
• Shay Gueron (University of Haifa, Israel and Meta, USA)
• Tim Güneysu (Ruhr-Universität Bochum, DE and DFKI, DE)
• Rafael Misoczki (Meta, USA)
• Jan Richter-Brokmann (Ruhr-Universität Bochum, DE)
• Nicolas Sendrier (INRIA, FR)
• Jean-Pierre Tillich (INRIA, FR)
• Valentin Vasseur (Thales, FR)

Contact: team@pqc-hqc.org

Changelog
Hereafter, we list the main modifications made to HQC design. Modifications related to
implementations are provided with the source code (available at https://pqc-hqc.org).

2025/08/22

• We have refactored this document to improve its readability notably adding detailed
figures describing HQC-PKE and HQC-KEM and fixing several typographical errors.

• We have updated the Fujisaki-Okamoto used to construct HQC-KEM from HQC-PKE
by fixing the rejection of the scheme [34], using the salted SFO̸⊥m transform instead of
the FO̸⊥ one [18] and adding (ekKEM, salt) within K and θ derivation.

• We have updated HQC keypair format by adding seedKEM in the decapsulation key
dkKEM so that the keypair can be easily checked if it is received from a third party
and removing x from dkKEM as it is not used in HQC-KEM.Decaps. In addition, an
alternative compressed format dkKEM = (seedKEM) have been included.

• We have updated fixed weight vectors sampling in HQC-PKE.Keygen by using a
sampler that outputs uniformly distributed vectors but rely on rejection sampling
(SampleFixedWeightVect$) instead of a sampler that don’t rely on rejection sampling
but output a a slightly biased distribution (SampleFixedWeightVect).

• We have made several minor modifications to align HQC specifications with design
choices made in FIPS-203 such as computing (seedPKE.dk, seedPKE.ek) using SHA3-512
instead of SHAKE256, absorbing all the bytes of ekKEM in the computation of (K, θ)
and reducing the sizes of K and θ from 40 to 32 bytes.

• Paulo L. Barreto, Santosh Ghosh, Shay Gueron, Tim Güneysu, Rafael Misoczki, Jan
Richter-Brokmann, Nicolas Sendrier, Jean-Pierre Tillich, Valentin Vasseur have joined
the HQC team.

2024/10/30

• We have modified the order of variable sampling in both key generation and encryption
as this results in performance gains in hardware implementation as suggested by [2].

• We have updated the countermeasure against multi-target attacks by including only
the first 32 bytes of the public key instead of the entire public key.

2

https://pqc-hqc.org

2023/04/30

• We have updated the Fujisaki-Okamoto used to construct HQC-KEM from HQC-PKE
by considering the FO̸⊥ transform with implicit rejection for the scheme.

• We have provided an analysis showing that sampling small weights vectors non-
uniformly, yet close to uniform, has a negligible effect on HQC security following [36].

2022/10/01

• We have updated the computation of the randomness θ used in HQC-PKE.Encrypt to
include a salt and ekKEM as a counter-measure to multi-ciphertext attacks [32].

• We have updated constant-weight words sampling using the technique from [36] as a
counter-measure to the timing attack from [20].

2020/10/01

• We have removed the HQC variant using the BCH-Repetition decoder as the newly
introduced RMRS decoder is strictly better.

• We have updated the sizes of the decoded messages for the concatenated RMRS code
to the targeted security levels (i.e. 128 and 192 rather than 256) for level 1 and 3 which
improves the decoding capacity of the RMRS code and improves our parameters.

• We have improved the theoretical lower bound for the Reed-Muller decoder which
permits to lower our theoretical bound for the DFR and improve our parameters.

• Jérôme Lacan and Arnaud Dion have joined the HQC team.

2020/05/04

• We have provided a more precise analysis of the modelization of the error distribution
which permits to lower the DFR of HQC and decrease the sizes of its public keys.

• We have introduced a new decoding algorithm based on Reed-Muller and Reed-
Solomon codes which permits to decrease the sizes of public keys. A new set of
parameters denoted HQC-RMRS has been provided.

• We have removed parameter sets providing a DFR lower than the security parameter
thus we now only consider parameters with a DFR corresponding to the security level.

• Jean-Marc Robert and Pascal Véron have joined the HQC team.

3

2019/04/10

• We have introduced the DQCSD problems with parity as a counter-measure to dis-
tinguishers from parity. In addition, we are using tensor product code of length n1n2

while working with vectors of size n with n the primitive prime immediately greater
than n1n2 to avoid algebraic attacks. The proof has been updated to take into account
the DQCSD problem with parity along with the ℓ = n− n1n2 truncated bits.

• We have removed parameter sets providing a DFR higher than 2−128.

• Jurjen Bos has joined the HQC team.

4

Contents
1 Introduction 6

2 Preliminaries 7
2.1 Notations . 7
2.2 Coding theory . 7
2.3 Security assumptions . 9
2.4 Security definitions . 11

3 Specifications 13
3.1 XOF and Hash functions . 13
3.2 Vector sampling . 13
3.3 Vector multiplication . 14
3.4 Concatenated Reed-Muller and Reed-Solomon codes 17
3.5 HQC-PKE . 22
3.6 HQC-KEM . 26

4 Parameters and Sizes 29
4.1 Parameter sets . 29
4.2 Ciphertext and key sizes . 29

5 Performance Analysis 30
5.1 Reference implementation . 30
5.2 Optimized implementation . 30
5.3 Known Answer Test values . 31

6 Security Analysis 32
6.1 Decoding Failure Rate analysis . 32
6.2 Security proof . 40
6.3 Known attacks . 45

7 Advantages and Limitations 47
7.1 Advantages . 47
7.2 Limitations . 47

References 48

5

1 Introduction
HQC is a code-based IND-CCA2 secure Key Exchange Mechanism (KEM) scheme whose
security is based on the Quasi-Cyclic Syndrome Decoding (QCSD) problem. In contrast
with many code-based cryptosystems, the family of codes being used is not required to be
indistinguishable among random codes. HQC is built from an IND-CPA secure Public Key
Encryption (PKE) scheme that was first described in [1] along with the HHK transform [22].
In order to avoid any ambiguity, the PKE and KEM constructions will be denoted as
HQC-PKE and HQC-KEM respectively.

Organization. We provide the required background in Section 2 and present the specifi-
cations of HQC in Section 3. Parameter sets are given in Section 4 while Sections 5 and 6
provide a performance analysis and a security analysis of the scheme respectively. Finally,
advantages and limitations of HQC are discussed in Section 7.

6

2 Preliminaries

2.1 Notations

Let Z denote the ring of integers, F2 denote the binary finite field and B denote the set
{0, . . . , 255} of unsigned 8-bits integers. Given a set S, let s←$ S denote that s is chosen
uniformly at random from S. Let V denote a vector space of dimension n over F2 for
some positive n ∈ Z. Elements of V can be interchangeably considered as row vectors or
polynomials in R = F2[X]/(Xn − 1). Vectors and polynomials (respectively, matrices) are
represented by lower-case (respectively upper-case) bold letters. A prime integer n is said
primitive if the polynomial (Xn − 1)/(X − 1) is irreducible in R. For u,v ∈ V , we define
their product as in R i.e. w = uv ∈ V with:

wk =
∑

i+j ≡ k (mod n)

ui · vj ∀k ∈ {0, 1, . . . , n− 1}.

Given v ∈ Fn
2 , let rot(v) denotes the circulant matrix induced by v namely:

rot(v) =


v0 vn−1 . . . v1
v1 v0 . . . v2
...

...
vn−1 vn−2 . . . v0

 ∈ Fn×n
2 .

One can see that the product of any two elements u,v ∈ R can be expressed as a usual
vector-matrix (or matrix-vector) product using the rot(·) operator as:

u · v = u× rot(v)⊤ =
(
rot(u)× v⊤

)⊤
= v × rot(u)⊤ = v · u.

Let denote ω(·) the Hamming weight of a vector i.e. by the number of its nonzero
coordinates. For a given positive integer ω, let Rω := {v ∈ R such that ω(v) = ω} denote
the set of vectors having Hamming weight ω.

Let v = (v0, . . . , vn−1) ∈ {0, 1}n with index 0 the least-significant bit. For 0 ≤ n′ ≤ n,
we define Truncate(v, n′) as the function that discards the n− n′ most-significant bits of v
and keep the n′ least-significant ones.

2.2 Coding theory

In the following, we provide basic definitions and properties about coding theory and refer
the reader to [23] for a complete survey.

Definition 2.2.1 (Linear Code). A linear code C of length n and dimension k (denoted
[n, k]) is a subspace of R of dimension k. Elements of C are referred to as codewords.

7

Definition 2.2.2 (Generator Matrix). Given an [n, k] code C, a matrix G ∈ Fk×n
2 is a

generator matrix for C if:
C =

{
mG, ∀m ∈ Fk

2

}
.

Definition 2.2.3 (Parity-Check Matrix). Given an [n, k] code C, a matrix H ∈ F(n−k)×n
2 is

a parity-check matrix for C if H is a generator matrix of the dual code C⊥:

C =
{
v ∈ Fn

2 such that Hv⊤ = 0
}

or equivalently C⊥ =
{
uH, ∀u ∈ Fn−k

2

}
.

Definition 2.2.4 (Syndrome). Let H ∈ F(n−k)×n
2 be a parity-check matrix of some [n, k]

code C, and v ∈ Fn
2 be a word. The syndrome of v is Hv⊤, and one has v ∈ C ⇔ Hv⊤ = 0.

Definition 2.2.5 (Minimum Distance). Let C be an [n, k] linear code over R and let ω be
a norm on R. The minimum distance of C is:

d = min
u,v∈C,u̸=v

ω(u− v).

A code of length n and dimension k with minimum distance d is capable of decoding
arbitrary patterns of up to ∆ = ⌊d−1

2
⌋ errors and is denoted as an [n, k, d] code.

HQC relies on Quasi-Cyclic codes in order to shorten its keys as suggested in [15].

Definition 2.2.6 (Quasi-Cyclic Codes [31]). View a vector c = (c0, . . . , cs−1) of Fsn
2 as s

successive blocks (n-tuples). An [sn, k, d] linear code C is Quasi-Cyclic (QC) of index s if,
for any c = (c0, . . . , cs−1) ∈ C, the vector obtained after applying a simultaneous circular
shift to every block c0, . . . , cs−1 is also a codeword. More formally, by considering each
block ci as a polynomial in R = F2[X]/(Xn − 1), the code C is QC of index s if for any
c = (c0, . . . , cs−1) ∈ C it holds that (X · c0, . . . , X · cs−1) ∈ C.

Definition 2.2.7 (Systematic Quasi-Cyclic Codes). A systematic Quasi-Cyclic [sn, n] code
of index s and rate 1/s is a quasi-cyclic code with an (s− 1)n× sn parity-check matrix of
the form:

H =


In 0 · · · 0 A0

0 In A1

.
0 · · · In As−2


where A0, . . . ,As−2 are circulant n× n matrices.

The definition of systematic quasi-cyclic codes of index s can be generalized to all rates ℓ/s,
ℓ = 1 . . . s− 1, but we shall only use systematic QC-codes of rates 1/2 and 1/3. Hereafter,
referring to a systematic QC-code will imply by default that it is of rate 1/s. Note that
arbitrary QC-codes are not necessarily equivalent to a systematic QC-code.

8

2.3 Security assumptions

In this section we describe difficult problems which are relevant for HQC and discuss their
complexity. All problems are variants of the decoding problem, which consists of looking for
the closest codeword to a given vector. When dealing with linear codes, it is readily seen
that the decoding problem stays the same when one is given the syndrome of the received
vector rather than the received vector. We therefore speak of Syndrome Decoding (SD).

Definition 2.3.1 (SD Distribution). Let n, k and ω be positive integers. The Syndrome
Decoding Distribution SD(n, k, ω) samples H←$ F(n−k)×n

2 and x←$ Fn
2 such that ω(x) = ω,

computes y⊤ = Hx⊤ and outputs (H,y).

Definition 2.3.2 (Computational SD Problem). Let n, k and ω be positive integers. Given
(H,y) ∈ F(n−k)×n

2 ×Fn−k
2 from the SD(n, k, ω) distribution, the Syndrome Decoding Problem

SD(n, k, ω) asks to find x ∈ Fn
2 such that y⊤ = Hx⊤ and ω(x) = ω.

Definition 2.3.3 (DSD Problem). Let n, k and ω be positive integers. Given (H,y) ∈
F(n−k)×n
2 × Fn−k

2 , the Decisional Syndrome Decoding Problem DSD(n, k, ω) asks to decide
with non-negligible advantage whether (H,y) came from the SD(n, k, ω) distribution or the
uniform distribution over F(n−k)×n

2 × Fn−k
2 .

For the Hamming distance, the SD problem has been proven NP-complete [7]. This problem
can also be seen as the Learning Parity with Noise (LPN) problem with a fixed number of
samples [3]. The DSD problem has been shown to be polynomially equivalent to its search
version in [3]. As mentioned above, this problem is the problem of decoding random linear
codes from random errors. The random errors are often taken as independent Bernoulli
variables acting independently on vector coordinates, rather than uniformly chosen from
the set of errors of a given weight, but this hardly makes any difference and one model
rather than the other is a question of convenience.

As our cryptosystem use QC-codes, the following definitions describe the DSD problems
in the QC setting. In particular, the case s = 2 corresponds to double circulant codes with
generator matrices of the form (In A) for A a circulant matrix. Such double circulant codes
have been used for more than 15 years in cryptography [16].

Definition 2.3.4 (s-QCSD Distribution). Let n, s and ω be positive integers. The s-
Quasi-Cyclic Syndrome Decoding Distribution s-QCSD(n, ω) samples a parity-check matrix
H ←$ F(sn−n)×sn

2 of a systematic Quasi Cyclic code C of index s and rate 1/s and a vector
x = (x0, . . . ,xs−1) ←$ Fsn

2 such that ω(xi) = ω ∀i ∈ [0, s − 1], computes y⊤ = Hx⊤ and
outputs (H,y).

Definition 2.3.5 (s-DQCSD Problem). Let n, s and ω be positive integers. Given (H,y) ∈
F(sn−n)×sn
2 ×Fsn−n

2 , the Decisional s-Quasi-Cyclic Syndrome Decoding Problem s-DQCSD(n, ω)
asks to decide with non-negligible advantage whether (H,y) came from the s-QCSD(n, ω)
distribution or the uniform distribution over F(sn−n)×sn

2 × Fsn−n
2 .

9

It would be somewhat more natural to choose the parity-check matrix H to be made up
of independent uniformly random circulant submatrices, rather than with the special form
required by Definition (2.2.7). We choose this distribution to make the security reduction
that follows less technical. It is readily seen that, for fixed s, when choosing QC codes with
this more general distribution, one obtains with non-negligible probability, a QC code that
admits a parity-check matrix of the form given in Definition (2.2.7). Therefore, requiring
QC codes to be systematic does not hurt the generality of the decoding problem for QC
codes. A similar remark holds for the slightly special form of weight distribution of the
vector x.

Although there is no general complexity result for QC codes, decoding these codes is con-
sidered hard by the community. There exist general attacks that use the cyclic structure
of the code [35] but these attacks have only a small impact (sublinear in code length) on
the complexity of the problem. The conclusion is that, in practice, the best attacks are the
same as those for non-circulant codes up to a small factor.

In order to avoid trivial distinguishers, an additional condition on the parity of the
syndrome is added to the problem. For b1 ∈ {0, 1}, we define the finite set Fn

2,b1
= {h ∈

Fn
2 s.t. h(1) = b1 mod 2} i.e. binary vectors of length n and parity b1. Similarly for

matrices, we define the finite sets:

Fn×2n
2,b1

=
{
H = (In rot (h)) ∈ Fn×2n

2 s.t. h ∈ Fn
2,b1

}
, and

F2n×3n
2,b1,b2

=

{
H =

(
In 0 rot(h1)
0 In rot(h2)

)
∈ F2n×3n

2 s.t. h1 ∈ Fn
2,b1

and h2 ∈ Fn
2,b2

}
.

This is pure technicality and has almost no effect on the parameters of our proposal as it
results in a security loss of at most 1 bit. Meanwhile, this permits to discard attacks such
as [19, 25, 26]1.

Definition 2.3.6 (2-QCSD-P Distribution). Let n, ω, b1 be positive integers and let
b2 = ω + b1 × ω mod 2. The 2-Quasi-Cyclic Syndrome Decoding with Parity Dis-
tribution 2-QCSD-P(n, ω, b1, b2) samples H ∈ Fn×2n

2,b1
and x = (x1,x2) ←$ F2n

2 such that
ω(x1) = ω(x2) = ω, compute y⊤ = Hx⊤ and outputs (H,y) ∈ Fn×2n

2,b1
× Fn

2,b2
.

Definition 2.3.7 (2-DQCSD-P Problem). Let n, ω, b1 be positive integers and let b2 =
ω + b1 × ω mod 2. Given (H,y) ∈ Fn×2n

2,b1
× Fn

2,b2
, the Decisional 2-Quasi-Cyclic Syndrome

Decoding with Parity Problem 2-DQCSD-P(n, ω, b1, b2) asks to decide with non-negligible
advantage whether (H,y) came from the 2-QCSD-P(n, ω, b1, b2) distribution or the uniform
distribution over Fn×2n

2,b1
× Fn

2,b2
.

1The authors chose to use a parity version of the 2-DQCSD problem rather than a variable weight version
as suggested in [26] for efficiency considerations.

10

In order to thwart structural attacks, one needs to work with a code of primitive prime
length n, so that Xn−1 has only two irreducible factors mod 2. However for the considered
parameters and codes (concatenated Reed-Muller and Reed-Solomon codes), the encoding of
a message m has size n1n2 which is obviously not prime. Therefore, we use as ambient length
n which is the first primitive prime greater than n1n2 and truncate the last ℓ = n − n1n2

bits wherever needed. This results in a slightly modified version of the 3-DQCSD problem
that we define hereafter.

Definition 2.3.8 (3-QCSD-PT Distribution). Let n, ω, b1, b2, ℓ be positive integers and let
b3 = ω+b1×ω mod 2. The 3-Quasi-Cyclic Syndrome Decoding with Parity and Truncation
Distribution 3-QCSD-PT (n, ω, b1, b2, b3, ℓ) samples H ←$ F2n×3n

2,b1,b2
and x = (x1,x2,x3) ←$

F3n
2 such that ω(x1) = ω(x2) = ω(x3) = ω, computes y⊤ = Hx⊤ where y = (y1,y2) and

outputs (H, (y1,Truncate(y2, ℓ))) ∈ F2n×3n
2,b1,b2

× (Fn
2,b3
× Fn−ℓ

2).

Definition 2.3.9 (3-QCSD-PT Problem). Let n, ω, b1, b2, ℓ be positive integers and let
b3 = ω+b1×ω mod 2. Given (H, (y1,y2)) ∈ F2n×3n

2,b1,b2
×(Fn

2,b3
×Fn−ℓ

2), the Decisional 3-Quasi-
Cyclic Syndrome Decoding with Parity and Truncation Problem 3-DQCSD-PT(n, ω, b1, b2, b3, ℓ)
asks to decide with non-negligible advantage whether (H, (y1,y2)) came from the 3-QCSD-PT
(n, ω, b1, b2, b3, ℓ) distribution or the uniform distribution over F2n×3n

2,b1,b2
× (Fn

2,b3
× Fn−ℓ

2).

Regarding the security of the 3-DQCSD-PT problem with parity and truncation, whenever
the number of truncated positions is very small compared to the block length n, the impact
on the security is negligible with respect to the 3-DQCSD problem since the best attack is
the ISD attack. Moreover since the truncation breaks the quasi-cyclicity, it also weaknesses
the advantage of quasi-cyclicity for the attacker.

2.4 Security definitions

In this section, we introduce the security definitions that are used for the security analysis
of HQC-PKE and HQC-KEM provided in Section 6.

Definition 2.4.1. Let PKE = (Keygen,Encrypt,Decrypt) be a public-key encryption scheme.
The PKE.IND-CPA game is defined as in Figure 1 and the IND-CPA advantage of an adver-
sary A = (ACHOOSE,AGUESS) against a PKE is defined as:

AdvIND-CPA
PKE (A) =

∣∣∣Pr[PKE.IND-CPA(A) = 1]− 1

2

∣∣∣.

11

Exp PKE.IND-CPA(A)

1. (ekPKE, dkPKE)← Keygen()
2. (m0,m1)← ACHOOSE(ekPKE)

3. b←$ {0, 1}
4. θ ←$ B|θ|, cPKE ← Encrypt(ekPKE,mb, θ)

5. b′ ← AGUESS(ekPKE, cPKE)

6. return (b = b′)

Figure 1: Experiment for the IND-CPA security of a PKE

Definition 2.4.2. Let KEM = (Keygen,Encaps,Decaps) be a key encapsulation mechanism.
The KEM.IND-CCA2 game is defined as in Figure 2 and the IND-CCA2 advantage of an
adversary A = (ACHOOSE,AGUESS) against a KEM is defined as:

AdvIND-CCA2
KEM (A) =

∣∣∣Pr[KEM.IND-CCA2(A)⇒ 1]− 1

2

∣∣∣.
Exp KEM.IND-CCA2(A)

1. (ekKEM, dkKEM)← Keygen()
2. b←$ {0, 1}
3. (K0, cKEM)← Encaps(ekKEM)

4. K1 ←$ B|K|

5. b′ ← ADecaps(·)
GUESS (Kb, cKEM)

6. return (b = b′)

Figure 2: Experiment for the IND-CCA2 security of a KEM

12

3 Specifications

3.1 XOF and Hash functions

Representation of objects. Seeds and salt are represented as byte strings while elements
of Fk

2, F
n1n2
2 and Fn

2 are represented as binary arrays.

XOF. The XOF is instantiated using SHAKE256 along with appropriate domain separation
as described in Table 1.

Hash functions. Hash functions G and I are instantiated using SHA3-512 while hash
function H and J are instantiated using SHA3-256. Each hash function uses its own domain
separator as described in Table 1.

Function Instantiation

ctx← XOF.Init(seed)

ctx← SHAKE256.Init()

in← seed || XOF_DOMAIN_SEPARATOR

SHAKE256.Absorb(ctx, in, |in|)

(ctx, out)← XOF.GetBytes(ctx, |out|) SHAKE256.Squeeze(ctx, out, |out|)

G(str) SHA3-512(str || G_DOMAIN_SEPARATOR)

I(str) SHA3-512(str || I_DOMAIN_SEPARATOR)

H(str) SHA3-256(str || H_DOMAIN_SEPARATOR)

J(str) SHA3-256(str || J_DOMAIN_SEPARATOR)

Table 1: Instantiation of XOF and Hash functions

3.2 Vector sampling

Sampling random vectors. Random vectors are sampled from Fk
2 and Fn

2 either uni-
formly or using SampleVect. For SampleVect, the random bits are derived from a seed using
XOF.GetBytes. Unused bits within the vector representation are set to zero.

Sampling random fixed weight vectors. Sampling vectors from Fn
2 of given Hamming

weight is done using the SampleFixedWeightVect$ and SampleFixedWeightVect functions.
SampleFixedWeightVect$ outputs uniformly distributed fixed weight vectors but rely on re-
jection sampling while SampleFixedWeightVect don’t rely on rejection sampling but the

13

distribution of the sampled vectors is slightly biased with respect to the uniform distribu-
tion. However, it is shown in Section 6.2.3 that this bias does not significantly affect the
security of the scheme. The SampleFixedWeightVect function follows Algorithm 5 from [36].
Let rand(n, ctx) be a function that produces a random integer uniformly distributed in
{0, 1, · · · , n − 1} from uniformly distributed integers in {0, 1, · · · , 2B − 1} produced by
randBits(B, ctx) for some integer B and XOF context ctx. The SampleFixedWeightVect rou-
tine starts by generating the vector support as described in GenerateRandomSupport, then
convert it to an n-dimensional array.

GenerateRandomSupport(ctx,Rω)

1. for i = ω − 1 to 0 do
2. l← i+ rand(n− i, ctx)

3. pos[i] ← (l ∈ {pos[j], i < j < ω}) ? i : l

4. return pos[0], · · · , pos[ω − 1]

rand(n, ctx)

1. x← randBits(B, ctx)

2. return x mod n

Sampling order in HQC-PKE.Encrypt. During encryption, the randomness values are
sampled in the following sequence: r2, then e, and finally r1 which allows some speed-up
for hardware implementations as suggested in [2].

3.3 Vector multiplication

Multiplications over F2[X]/(Xn−1) are performed without taking account the sparsity the
considered polynomials in order to avoid potential leakage of information. Multiplications
are computed using a combination of Toom-Cook and Karatsuba algorithms.

Toom-Cook multiplication over F2[X]. One wants to multiply two arbitrary polynomi-
als over F2[X] of degree at most N−1, using the Toom-Cook algorithm. Several approaches
have been extensively detailed in the literature. Let A and B be two binary polynomials of
degree at most N−1. These polynomials are packed into a table of 64 bit words, whose size
is ⌈N/64⌉. Let t = 3n with n a value ensuring t ⩾ ⌈N/64⌉. Now, A and B are considered
as polynomials of degree at most 64 · t− 1. A and B are split into three parts. One wants
now to evaluate the result C = A ·B with

A = a0 + a1 ·X64n + a2 ·X2·64n ∈ F2[X],

B = b0 + b1 ·X64n + b2 ·X2·64n ∈ F2[X],

(of maximum degree 64t− 1, and ai, bi of maximum degree 64n− 1) and,

C = c0 + c1 ·X64n + c2 ·X2·64n + c3 ·X3·64n + c4 ·X4·64n ∈ F2[X]

of maximum degree 6 · 64n− 2.

14

The “word-aligned” version evaluates the polynomial for the values 0, 1, x = Xw, x+1 =
Xw + 1, ∞, w being the word size, typically 64 in modern processors. Furthermore, on
Intel processors, one can set w = 256 to take advantage of the vectorized instruction set
AVX-AVX2 at the cost of a slight size reduction. After the evaluation phase, one performs
an interpolation to get the result coefficients.

For the evaluation phase, one has:

C(0) = a0 · b0
C(1) = (a0 + a1 + a2) · (b0 + b1 + b2)
C(x) = (a0 + a1 · x+ a2 · x2) · (b0 + b1 · x+ b2 · x2)
C(x+ 1) = (a0 + a1 · (x+ 1) + a2 · (x2 + 1)) · (b0 + b1 · (x+ 1) + b2 · (x2 + 1))
C(∞) = a2 · b2

The implementation of this phase is straightforward, providing that the multiplications
ai · bi is either another Toom-Cook or Karatsuba multiplication. One may notice that the
multiplications by x or x2 are virtually free word shifts.

Finally, the interpolation phase gives :

c0 = C(0)
c1 = (x2 + x+ 1)/(x2 + x) · C(0) + C(1) + C(x)/x+ C(x+ 1)/(x+ 1) + (x2 + x) · C(∞)
c2 = C(1)/(x2 + x) + C(x)/(x+ 1) + C(x+ 1)/x+ (x2 + x+ 1) · C(∞)
c3 = C(0)/(x2 + x) + C(1)/(x2 + x) + C(x)/(x2 + x) + C(x+ 1)/(x2 + x)
c4 = C(∞)

Karatsuba algorithm. Let A and B be two binary polynomials of degree at most N − 1.
These polynomials are packed into a table of 64 bit words, whose size is ⌈N/64⌉. Let
t = 2r with r the minimum value ensuring t ⩾ ⌈N/64⌉. Now, A and B are considered
as polynomials of degree at most 64 · t − 1. The corresponding multiplication algorithm
is described in Karatsuba. In this algorithm, the polynomials A and B are split into two
parts, however, variants with other splits can be extrapolated. In particular, we used a
3-part split (3-Karatsuba) as the Toom-Cook elementary multiplication for HQC-128 and
HQC-192, and a 5-part split (5-Karatsuba) as the Toom-Cook elementary multiplication
for HQC-256. The multiplication line 2 (denoted Mult64) can be performed using a single
processor instruction (pclmul for carry-less multiplier).

Application to HQC multiplications. The HQC parameters lead to the construction
of the multiplications over F2[X] depicted in Table 2.

15

Karatsuba(A,B, t)

Input: A and B on t = 2r computer words.
Output: R = A×B.

1. if t = 1

2. return Mult64(A,B)

3. else

▷ Split in two halves of word size t/2

4. A = A0 + x64t/2A1

5. B = B0 + x64t/2B1

▷ Recursive multiplication
6. R0 ← Karatsuba(A0, B0, t/2)

7. R1 ← Karatsuba(A1, B1, t/2)

8. R2 ← Karatsuba(A0 +A1, B0 +B1, t/2)

▷ Reconstruction
9. R← R0 + (R0 +R1 +R2)X

64t/2 +R1X
64t

10. return R

11. endif

Instance HQC-1 HQC-3 HQC-5
HQC Size (bits) 17 669 35 851 57 637

Main multiplication Toom3-Karatsuba3 Toom3-Karatsuba3 Toom-Cook3

Size (bits) 18 048 36 480 59 904
Elementary multiplication 3-Karatsuba 3-Karatsuba 5-Karatsuba

Size (bits) 6144 12 288 20 480

Table 2: Implementation of HQC multiplications over F2[X]

16

3.4 Concatenated Reed-Muller and Reed-Solomon codes

HQC relies on a code C and associated C.Encode and C.Decode algorithms that are instan-
tiated using concatenated Reed-Muller and Reed-Solomon codes as described in [4].

3.4.1 Concatenated codes

Definition 3.4.1 (Concatenated codes). A concatenated code consists of an external code
[ne, ke, de] over Fq and an internal code [ni, ki, di] over F2, with q = 2ki. We use a bijection
between elements of Fq and the words of the internal code to obtain a transformation:

Fne
q → FN

2

where N = neni. The external code is thus transformed into a binary code of parameters
[N = neni, K = keki, D ⩾ dedi].

For the external code, we use a Reed-Solomon code of dimension 32 over F256. For
the internal code, we use the Reed-Muller code [128, 8, 64] that we duplicate 3 or 5 times
(i.e. duplicating each bit to obtain codes of parameters [384, 8, 192] and [640, 8, 320]). We
perform maximum likelihood decoding on the internal code. Doing that, we obtain a vector
of Fne

q that is then decoded using an algebraic decoder for the Reed-Solomon code.

3.4.2 Reed-Solomon codes

Let p be a prime number and q is any power of p. Following [24], a Reed-Solomon code
RS[n, k, dmin] with symbols in Fq has the following parameters:

• Block length n = q − 1 ;

• Number of parity-check digits n− k = 2δ, with δ, the correcting capacity of the code
and k the number of information bits ;

• Minimum distance dmin = 2δ + 1.

Let α be a primitive element in F2m , the generator polynomial g(x) of the RS[n, k, δ] code
is given by:

g(x) = (x+ α)(x+ α2) · · · (x+ α2δ).

Shortened Reed-Solomon codes used in HQC. Depending on HQC parameters, we
construct shortened Reed-Solomon (RS-S1, RS-S2 and RS-S3) codes such that k is equal
to 16, 24 or 32 from the following RS codes RS-1, RS-2 and RS-3 from [24]. The shortened
codes are obtained by subtracting 209 from the parameters n and k of the code RS-1,
subtracting 199 from the parameters n and k of the code RS-2 and by subtracting 165 from
the parameters n and k of the code RS-3. As a result, we obtain the following shortened
Reed-Solomon codes:

17

• RS-S1[46 = 255− 209, 16 = 225− 209, 31] ;

• RS-S2[56 = 255− 199, 24 = 223− 199, 33] ;

• RS-S3[90 = 255− 165, 32 = 197− 165, 49].

One should note that shortening the Reed-Solomon code does not affect its error correcting
capacity. Table 3 provides the code parameters for both the original and resulting shortened
Reed-Solomon codes.

Code n k δ

RS-1 255 225 15
RS-2 255 223 16
RS-3 255 197 29

RS-S1 46 16 15
RS-S2 56 24 16
RS-S3 90 32 29

Table 3: Original and shortened Reed-Solomon codes.

Generator polynomials. For HQC, we are working in F2m with m = 8. To do so, we
use the primitive polynomial 1 + α2 + α3 + α4 + α8 of degree 8 to build this field [24]. We
denote by g1(x), g2(x) and g3(x) the generator polynomials of RS-S1, RS-S2 and RS-S3
respectively, which are identical to the generator polynomials of Reed-Solomon codes RS-1,
RS-2 and RS-3 respectively. The generator polynomials g1(x), g2(x) and g3(x) of the codes
RS-S1, RS-S2 and RS-S3 have been precomputed and are given hereafter. One can use the
functions provided in the file reed_solomon.h to reconstruct these generator polynomials.

Generator polynomial of RS-S1. g1(x) = 89+69x+153x2+116x3+176x4+117x5+111x6+

75x7+73x8+233x9+242x10+233x11+65x12+210x13+21x14+139x15+103x16+173x17+
67x18 + 118x19 + 105x20 + 210x21 + 174x22 + 110x23 + 74x24 + 69x25 + 228x26 + 82x27 +
255x28 + 181x29 + x30.

Generator polynomial of RS-S2. g2(x) = 45+216x+239x2+24x3+253x4+104x5+27x6+

40x7+107x8+50x9+163x10+210x11+227x12+134x13+224x14+158x15+119x16+13x17+
158x18+x19+238x20+164x21+82x22+43x23+15x24+232x25+246x26+142x27+50x28+
189x29 + 29x30 + 232x31 + x32.

Generator polynomial of RS-S3. g3(x) = 49+167x+49x2+39x3+200x4+121x5+124x6+

91x7+240x8+63x9+148x10+71x11+150x12+123x13+87x14+101x15+32x16+215x17+

18

159x18 + 71x19 + 201x20 + 115x21 + 97x22 + 210x23 + 186x24 + 183x25 + 141x26 + 217x27 +
123x28 + 12x29 + 31x30 + 243x31 + 180x32 + 219x33 + 152x34 + 239x35 + 99x36 + 141x37 +
4x38+246x39+191x40+144x41+8x42+232x43+47x44+27x45+141x46+178x47+130x48+
64x49 + 124x50 + 47x51 + 39x52 + 188x53 + 216x54 + 48x55 + 199x56 + 187x57 + x58.

Encoding shortened Reed-Solomon codes. In the following we present the encoding
of Reed-Solomon codes which can also be used to encode shortened Reed-Solomon codes.
We denote by u(x) = u0+ · · ·+uk−1x

k−1 the polynomial corresponding to the message u =
(u0, · · · , uk−1) to be encoded and g(x) the generator polynomial. We use the systematic form
of encoding where the rightmost k elements of the codeword polynomial are the message
bits and the leftmost n− k bits are the parity-check bits. Following [24], the code word is
given by c(x) = b(x)+xn−ku(x), where b(x) is the reminder of the division of the polynomial
xn−ku(x) by g(x). In consequence, the encoding in systematic form consists of three steps :

1. Multiply the message u(x) by xn−k.

2. Compute the remainder b(x) by dividing xn−ku(x) by the generator polynomial g(x).

3. Combine b(x) and xn−ku(x) to obtain the code polynomial c(x) = b(x) + xn−ku(x).

Decoding shortened Reed-Solomon codes The decoding of classical Reed-Solomon
codes can be used to decode shortened Reed-Solomon codes. For sake of simplicity, we will
detail the process of decoding classical Reed-Solomon codes. Following [24], consider the
Reed-Solomon code defined by [n, k, dmin], with n = 2m − 1 (m ≥ 0 of positive integer)
and suppose that a codeword v(x) = v0 + v1x + · · · + vn−1x

n−1 is transmitted. We denote
r(x) = r0 + r1x+ · · ·+ rn−1x

n−1 the received word, potentially altered by some errors.
We denote the error polynomial e(x) = e0 + e1x + · · · + en−1x

n−1, meaning that there
is an error in position j whenever ej ̸= 0. Hence, r(x) = v(x) + e(x). We define the set
of syndromes S1, S2, · · · , S2δ as Si = r(αi), with α being a primitive element in F2m . We
have r(αi) = e(αi), since v(αi) = 0 (v is a codeword). Suppose that e(x) has t errors at
locations j1, · · · , jt, i.e. e(x) = ej1x

j1 + ej2x
j2 + · · ·+ ejtx

jt . We obtain the following set of
equations, where αj1 , αj2 , · · · , αjt are unknown:

S1 = ej1α
j1 + ej2α

j2 + · · ·+ ejtα
jt

S2 = ej1(α
j1)2 + ej2(α

j2)2 + · · ·+ ejt(α
jt)2

S3 = ej1(α
j1)3 + ej2(α

j2)3 + · · ·+ ejt(α
jt)3

...
S2δ = ej1(α

j1)2δ + ej2(α
j2)2δ + · · ·+ ejt(α

jt)2δ

The goal of a Reed-Solomon decoding algorithm is to solve this system of equations.
We define the error location numbers by βi = αji , which indicate the location of the errors.
The equations above can be expressed as follows:

19



S1 = ej1β1 + ej2β2 + · · ·+ ejtβt

S2 = ej1β
2
1 + ej2β

2
2 + · · ·+ ejtβ

2
t

S3 = ej1β
3
1 + ej2β

3
2 + · · ·+ ejtβ

3
t

...
S2δ = ej1β

2δ
1 + ej2β

2δ
2 + · · ·+ ejtβ

2δ
t

We define the error location polynomial as:

σ(x) = (1 + β1x)(1 + β2x) · · · (1 + βtx)

= 1 + σ1x+ σ2x
2 + · · ·+ σtx

t

One can see that the roots of σ(x) are β−11 , β−12 , · · · , β−1t which are the inverses of the error
location numbers. After retrieving the coefficients of σ(x), one can compute the error values.
Let Z(x) = 1 + (S1 + σ1)x+ (S2 + σ1S1 + σ2)x

2 + · · ·+ (St + σ1St−1 + σ2St−2 + · · ·+ σt)x
t,

the error value at location βl is given [6] by:

ejl =
Z(β−1l)

t∏
i=1
i ̸=l

(1 + βiβ
−1
l)

.

The decoding is completed by computing r(x)− e(x).

One can summarize the decoding procedure by the following steps:

1. Compute the 2δ syndromes using the received polynomial. The syndromes are com-
puted in a classical way by evaluating r(αi) for each value of i.

2. Compute the error-location polynomial σ(x) from the 2δ syndromes computed in the
first step. Here we use Berlekamp’s algorithm [24].

3. Find the error-location numbers by calculating the roots of the polynomial σ(x) and
returning their inverses. We implement this step with an additive Fast Fourier Trans-
form algorithm from [17].

4. Compute the polynomial Z(x).

5. Compute the error values.

6. Correct the errors in the received polynomial.

20

3.4.3 Duplicated Reed-Muller codes

For any positive integers m and r with 0 ≤ r ≤ m, there exists a binary rth order Reed-
Muller code denoted by RM(r,m) with the following parameters:

• Code length n = 2m ;

• Dimension k =
∑r

i=0

(
m
i

)
;

• Minimum distance dmin = 2m−r.

HQC uses duplicated Reed-Muller codes. In particular, we are using first-order Reed-
Muller denoted RM(1, 7) which is the binary code [128, 8, 64].

Decoding the internal Reed-Muller code. The Reed-Muller code of order 1 can be
decoded using a fast Hadamard transform (see chapter 14 of [28] for example). The algo-
rithm needs to be slightly adapted when decoding duplicated codes. For example, if the
Reed-Muller is duplicated three times, we create the function F : F3

2 → {3, 1,−1,−3} where
we started with transforming each block of three bits x1x2x3 of the received vector in:

(−1)x1 + (−1)x2 + (−1)x3

We then apply the Hadamard transform to the function F . We take the maximum value in
F̂ and x ∈ F3

2 that maximizes the value of |F̂ |. If F̂ (x) is positive, then the closest codeword
is xG where G is the generator matrix of the Hadamard code (without the all-one-vector).
If F̂ (x) is negative, then we need to add the all-one-vector to it.

Encoding Duplicated Reed-Muller codes. Following [28], the encoding is done in
classical way by using a matrix vector multiplication. The codeword is then duplicated
depending on the used parameter as described in Table 4.

Instance Reed-Muller Code Multiplicity Duplicated Reed-Muller Code

HQC-1 [128, 8, 64] 3 [384, 8, 192]
HQC-3 [128, 8, 64] 5 [640, 8, 320]
HQC-5 [128, 8, 64] 5 [640, 8, 320]

Table 4: Duplicated Reed-Muller codes.

Decoding Duplicated Reed-Muller codes. Following [28], the decoding of duplicated
Reed-Muller codes is done in three steps:

1. Compute the function F described and apply it on the received codeword. We
give details about how this process is done where the multiplicity is equal to 2,

21

as an example. Let v be a duplicated Reed-Muller codeword, it can be seen as
v = (a1b1, · · · , an2bn2) where each ai, bi has 128 bits size (ai = (ai0 , · · · , ai128) and
bi = (bi0 , · · · , bi128)). The transformation F is applied to each element in v as follows
((−1)ai0 + (−1)bi0 , · · · , (−1)ai128 + (−1)bi128). The cases when multiplicity is equal to
3 or 5 follow a similar process.

2. Compute the Hadamard transform which is the first phase of the Green machine.

3. Compute the location of the highest value on the output of the previous step. This
is the second phase of the Green machine. When the peak is positive we add the
all-one-vector and if there are two identical peaks, the peak with smallest value in the
lowest 7 bits it taken.

3.5 HQC-PKE
HQC uses a decodable [n1n2, k] code C which can correct at least ∆ errors as well as a
random double-circulant [2n, n] code with parity-check matrix (In rot(h)). The code C is
instantiated using concatenated Reed-Muller and Reed-Solomon codes which are described
in Section 3.4. The codewords of C are in Fn1n2

2 while other vectors are in Fn
2 where n is

the smallest primitive prime greater than n1n2. All computations are made in Fn
2 and the

remaining ℓ = n− n1n2 bits are truncated whenever required.

Correctness. The correctness of HQC relies on the decoding capability of the code C.
Specifically, C correctly decodes v − u · y whenever:

ω(s · r2 − u · y + e) ≤ ∆

ω((x+ h · y) · r2 − (r1 + h · r2) · y + e) ≤ ∆

ω(x · r2 − r1 · y + e) ≤ ∆

An analysis of the distribution of the error vector e′ = x · r2 − r1 · y + e and the resulting
decoding failure rate of the scheme is provided in Section 6.1.

Keypair format. The decapsulation key dkKEM can be stored using the default format
dkKEM = (ekKEM, dkPKE, σ, seedKEM) or the compressed format dkKEM = (seedKEM). In both
cases, the keypair (ekKEM, dkKEM) can be checked using seedKEM to derive (seedPKE, σ) which
in turn can be used to derive (ekPKE, dkPKE) where ekKEM = ekPKE.

22

HQC-PKE.Keygen(seedPKE)

Input: Seed seedPKE.
Output: Encryption key ekPKE, decryption key dkPKE.

▷ Compute dkPKE and ekPKE seeds
1. (seedPKE.dk, seedPKE.ek)← I(seedPKE)

▷ Compute decryption key dkPKE

2. ctxPKE.dk ← XOF.Init(seedPKE.dk)

3. (ctxPKE.dk,y)← SampleFixedWeightVect$(ctxPKE.dk,Rω)

4. (ctxPKE.dk,x)← SampleFixedWeightVect$(ctxPKE.dk,Rω)

5. dkPKE ← seedPKE.dk

▷ Compute encryption key ekPKE

6. ctxPKE.ek ← XOF.Init(seedPKE.ek)

7. (ctxPKE.ek,h)← SampleVect(ctxPKE.ek,R)
8. s← x+ h · y
9. ekPKE ← (seedPKE.ek, s)

10. return (ekPKE, dkPKE)

23

HQC-PKE.Encrypt(ekPKE,m, θ)

Input: Encryption key ekPKE, message m, randomness θ.
Output: Ciphertext cPKE.

▷ Parse encryption key ekPKE

1. seedPKE.ek ← ekPKE[0 : |seed|]
2. ctxPKE.ek ← XOF.Init(seedPKE.ek)

3. (ctxPKE.ek,h)← SampleVect(ctxPKE.ek,R)
4. s← ekPKE[|seed| : |seed|+ |s|]

▷ Compute ciphertext cPKE
5. ctxθ ← XOF.Init(θ)

6. (ctxθ, r2)← SampleFixedWeightVect(ctxθ,Rωr)

7. (ctxθ, e)← SampleFixedWeightVect(ctxθ,Rωe)

8. (ctxθ, r1)← SampleFixedWeightVect(ctxθ,Rωr)

9. u← r1 + h · r2
10. v← C.Encode(m) + Truncate(s · r2 + e, ℓ)

11. cPKE ← (u,v)

12. return cPKE

24

HQC-PKE.Decrypt(dkPKE, cPKE)

Input: Decryption key dkPKE, ciphertext cPKE.
Output: Message m.

▷ Parse decryption key dkPKE

1. seedPKE.dk ← dkPKE[0 : |seed|]
2. ctxPKE.dk ← XOF.Init(seedPKE.dk)

3. (ctxPKE.dk,y)← SampleFixedWeightVect$(ctxPKE.dk,Rω)

▷ Parse ciphertext cPKE
4. u← cPKE[0 : |u|]
5. v← cPKE[|u| : |u|+ |v|]

▷ Compute plaintext m
6. m← C.Decode(v − Truncate(u · y, ℓ))

7. return m

25

3.6 HQC-KEM
HQC-KEM is derived from HQC-PKE using the Fujisaki-Okamoto transformation [14] in-
stantiated following the HHK framework with implicit rejection [22].

HQC-KEM.Keygen()

Input: None.
Output: Encapsulation key ekKEM, decapsulation key dkKEM.

▷ Sample seedKEM

1. seedKEM ←$ B|seed|

▷ Compute seedPKE and randomness σ

2. ctxKEM ← XOF.Init(seedKEM)

3. (ctxKEM, seedPKE)← XOF.GetBytes(ctxKEM, |seed|)
4. (ctxKEM, σ)← XOF.GetBytes(ctxKEM, |k|)

▷ Compute HQC-PKE keypair
5. (ekPKE, dkPKE)← HQC-PKE.Keygen(seedPKE)

▷ Compute HQC-KEM keypair
6. ekKEM ← ekPKE

7. dkKEM ← (ekKEM, dkPKE, σ, seedKEM)

8. return (ekKEM, dkKEM)

26

HQC-KEM.Encaps(ekKEM)

Input: Encapsulation key ekKEM.
Output: Shared secret key K, ciphertext cKEM.

▷ Sample message m and salt

1. m←$ B|k|

2. salt←$ B|salt|

▷ Compute shared key K and ciphertext cKEM
3. (K, θ)← G(H(ekKEM)∥m∥salt)
4. cPKE ← HQC-PKE.Encrypt(ekKEM,m, θ)

5. cKEM ← (cPKE, salt)

6. return (K, cKEM)

27

HQC-KEM.Decaps(dkKEM, cKEM)

Input: Decapsulation key dkKEM, ciphertext cKEM.
Output: Shared secret key K ′.

▷ Parse decapsulation key dkKEM

1. ekKEM ← dkKEM[0 : |ekKEM|]
2. dkPKE ← dkKEM[|ekKEM| : |ekKEM|+ |dkPKE|]
3. σ ← dkKEM[|ekKEM|+ |dkPKE| : |ekKEM|+ |dkPKE|+ |σ|]

▷ Parse ciphertext cKEM
4. cPKE ← cKEM[0 : |cPKE|]
5. salt← cKEM[|cPKE| : |cPKE|+ |salt|]

▷ Compute message m′

6. m′ ← HQC-PKE.Decrypt(dkPKE, cPKE)

▷ Compute shared key K ′ and ciphertext c′KEM
7. (K ′, θ′)← G(H(ekKEM)∥m′∥salt)
8. c′PKE ← HQC-PKE.Encrypt(ekKEM,m′, θ′)

9. c′KEM ← (c′PKE, salt)

▷ Compute rejection key K̄

10. K̄ ← J(H(ekKEM)∥σ∥cKEM)

11. if m′ = ⊥ or if c′KEM ̸= cKEM

12. K ′ ← K̄

13. endif

14. return K ′

28

4 Parameters and Sizes
This section provides parameters sets for HQC and resulting ciphertext and key sizes. For
each parameter set, the parameters are chosen so that the minimal workfactor of the best
known attack exceeds the security parameter (see Section 6.3 for more details).

4.1 Parameter sets

The parameters sets of HQC are given in Table 5 where n1 denote the length of the external
Reed-Solomon code and n2 denote the length of the internal Reed-Muller code so that the
length of the concatenated code C is n1n2, its dimension is k and its decoding failure rate
(DFR) is adjusted for each security level. The parameter n denotes the length of the
ambient space namely the smallest primitive prime greater than n1n2. The parameters ω,
ωr and ωe denote the weight of the vectors (x,y), (r1, r2) and e respectively.

Instance Security n1 n2 n k ω ωr = ωe DFR

HQC-1 NIST-1 46 384 17 669 128 66 75 < 2−128

HQC-3 NIST-3 56 640 35 851 192 100 114 < 2−192

HQC-5 NIST-5 90 640 57 637 256 131 149 < 2−256

Table 5: Parameter sets for HQC

4.2 Ciphertext and key sizes

The encapsulation key ekKEM has size |ekKEM| = |seed| + ⌈n/8⌉ while the decapsulation
key dkKEM has size |dkKEM| = |ekKEM| + |seed| + ⌈k/8⌉ + |seed| or |dkKEM| = |seed| if the
compressed format is used. The ciphertext cKEM has size |cKEM| = ⌈n/8⌉+⌈(n1n2)/8⌉+|salt|
while the shared key K has size |K|. The seeds, salt and shared key have size |seed| = 32 B,
|salt| = 16 B, |K| = 32 B respectively. The resulting sizes are given in bytes in Table 6.

Instance Security |ekKEM| |dkKEM| |cKEM| |K|

HQC-1 NIST-1 2 241 2 321 32 4 433 32

HQC-3 NIST-3 4 514 4 602 32 8 978 32

HQC-5 NIST-5 7 237 7 333 32 14 421 32

Table 6: HQC keypair (ekKEM, dkKEM), ciphertext cKEM and shared key K sizes (in Bytes)

29

5 Performance Analysis
This section provides performance measurements of our HQC.KEM implementations.

Benchmark platform. The benchmarks have been performed on a machine running
Ubuntu 22.04.2 LTS, that has 32 GB of memory and an Intel® Core™ i7-11850H CPU
@ 2.50GHz for which the Hyper-Threading and Turbo Boost features were disabled. The
scheme have been compiled with gcc (version 11.4.0). All benchmarks were conducted
using the default key format, where the decapsulation key is represented as dkKEM =
(ekKEM, dkPKE, σ, seedKEM). For each parameter set, the results have been obtained by com-
puting the mean from 1000 random instances. In order to minimize biases from background
tasks running on the benchmark platform, each instances have been repeated 100 times and
averaged.

Constant time. Both the reference and the optimized AVX2 implementations have been
implemented in constant time. We have thoroughly analyzed the code to ensure that only
unused randomness (i.e., rejected based on public criteria) or otherwise non-sensitive data
may be leaked.

5.1 Reference implementation

The performances of our reference implementation on the aforementioned benchmark plat-
form are given in Table 7. The reference implementation is written in C and have been
compiled with gcc (version 11.4.0) using the flags -O3 -std=c99 -funroll-all-loops
-flto -pedantic -Wall -Wextra.

Instance KeyGen Encaps Decaps

HQC-1 4 557 9 116 13 918

HQC-3 13 783 27 571 41 669

HQC-5 33 123 66 261 100 213

Table 7: Performances (in kiloCycles) of the reference implementation of HQC

5.2 Optimized implementation

The performances of our optimized implementation on the aforementioned benchmark plat-
form are given in Table 8. Our optimized implementation leverages AVX2 instructions and
have been compiled using gcc (version 8.2.1) using the flags -O3 -std=c99 -funroll-all
-loops -mavx -mavx2 -mpclmul -pedantic -Wall -Wextra.

30

Instance KeyGen Encaps Decaps

HQC-1 76 150 353

HQC-3 181 355 732

HQC-5 363 720 1 435

Table 8: Performance (in kiloCycles) of the optimized implementation of HQC

5.3 Known Answer Test values

Known Answer Test (KAT) values have been generated using the script provided by the
NIST. They are available in the folders KATs/Reference_Implementation/ and KATs/Op
timized_Implementation/.In addition, examples with intermediate values have also been
provided in these folders. One should note that one can generate the aforementioned test
files using respectively the kat and verbose modes of our implementation. The procedure
to follow in order to do so is detailed in the technical documentation.

31

6 Security Analysis

6.1 Decoding Failure Rate analysis

We analyze the distribution of the error vector e′ = x · r2 − r1 · y + e in Section 6.1.1 and
the Decoding Failure Rate (DFR) of the internal Reed-Muller code in Section 6.1.2. The
resulting DFR of the scheme is studied in Section 6.1.3.

6.1.1 Analysis of the error vector distribution

We provide a precise analysis of the error distribution approximation following [4]. We first
compute exactly the probability distribution of each fixed coordinate e′k of the error vector

e′ = x · r2 − r1 · y + e = (e′0, . . . e
′
n−1).

We obtain that every coordinate e′k is Bernoulli distributed with parameter p∗ = P [e′k = 1]
given by Proposition 6.1.2.

To compute decoding error probabilities, we will then need the probability distribution
of the weight of the error vector e′ restricted to given sets of coordinates that correspond
to codeword supports. We will make the simplifying assumption that the coordinates e′k
of e′ are independent variables, which will let us work with the binomial distribution of
parameter p∗ for the weight distributions of e′. In other words we modelize the error vector
as a binary symmetric channel with parameters p∗. This working assumption is justified
by remarking that, in the high weight regime relevant to us, since the component vectors
x,y, e have fixed weights, the probability that a given coordinate e′k takes the value 1
conditioned on abnormally many others equalling 1 can realistically only be ≤ p∗. We
support this modeling of the otherwise intractable weight distribution of e′ by extensive
simulations. These simulations back up our assumption that our computations of decoding
error probabilities and DFRs can only be upper bounds on their real values.

The vectors x,y, r1, r2, e have been taken uniformly random and independently chosen
among vectors of weight ω, ωr and ωe. We first evaluate the distributions of the products
x · r2 and r1 · y.

Proposition 6.1.1. Let x = (x0, . . . xn−1) be a random vector chosen uniformly among all
binary vectors of weight ω and let r = (r0, . . . , rn−1) be a random vector chosen uniformly
among all vectors of weight ωr and independently of x. Then, denoting z = x · r, we have
that for every k ∈ {0, . . . n − 1}, the k-th coordinate zk of z is Bernoulli distributed with
parameter p̃ = P (zk = 1) equal to:

p̃ =
1(

n
ω

)(
n
ωr

) ∑
1⩽ℓ⩽min(ω,ωr)

ℓ odd

Cℓ

where Cℓ =
(
n
ℓ

)(
n−ℓ
ω−ℓ

)(
n−ω
ωr−ℓ

)
.

32

Proof. The total number of ordered pairs (x, r) is
(
n
ω

)(
n
ωr

)
. Among those, we need to count

how many are such that zk = 1. We note that

zk =
∑

i+j=k mod n
0≤i,j≤n−1

xirj.

We need therefore to count the number of couples (x, r) such that we have xirk−i = 1 an
odd number of times when i ranges over {0, . . . , n − 1} (and k − i is understood modulo
n). Let us count the number Cℓ of couples (x, r) such that xirk−i = 1 exactly ℓ times. For
ℓ > min(w,wr) we clearly have Cℓ = 0. For ℓ ≤ min(ω, ωr) we have

(
n
ℓ

)
choices for the

set of coordinates i such that xi = rk−i = 1, then
(
n−ℓ
ω−ℓ

)
remaining choices for the set of

coordinates i such that xi = 1 and rk−i = 0, and finally
(
n−ω
ωr−ℓ

)
remaining choices for the set

of coordinates i such that xi = 0 and rk−i = 1. Hence Cℓ =
(
n
ℓ

)(
n−ℓ
ω−ℓ

)(
n−ω
ωr−ℓ

)
. The formula

for p̃ follows.

Let x,y (respectively r1, r2) be independent random vectors chosen uniformly among
all binary vectors of weight ω (respectively ωr). By independence of (x, r2) with (y, r1), the
k-th coordinates of x · r2 and of r1 · y are independent, and they are Bernoulli distributed
with parameter p̃ by Proposition 6.1.1. Therefore their modulo 2 sum t = x · r2 − r1 · y is
Bernoulli distributed with: {

Pr[tk = 1] = 2p̃(1− p̃),

Pr[tk = 0] = (1− p̃)2 + p̃2.
(1)

Finally, by adding modulo 2 coordinate-wise the two independent vectors e and t, we obtain
the distribution of the coordinates of the error vector e′ = x · r2 − r1 · y + e.

Proposition 6.1.2. Let x,y,r1, r2, e be independent random vectors with uniform distribu-
tions among vectors of fixed weight w for x,y, among vectors of weight ωr for r1, r2, and
among vectors of weight ωe for e. Let e′ = x · r2− r1 ·y+ e = (e′0, . . . , e

′
n−1). Then for any

k = 0 . . . n− 1, the coordinate e′k has distribution:{
Pr[e′k = 1] = 2p̃(1− p̃)(1− ωe

n
) + ((1− p̃)2 + p̃2) ωe

n
,

Pr[e′k = 0] = ((1− p̃)2 + p̃2) (1− ωe

n
) + 2p̃(1− p̃)ωe

n
.

(2)

Proposition 6.1.2 gives us the probability that a coordinate of the error vector e′ is 1.
In our simulations, which occur in the regime ω = α

√
n with constant α, we make the

simplifying assumption that the coordinates of e′ are independent, meaning that the weight
of e′ follows a binomial distribution of parameter p⋆, where p⋆ is defined as in Eq. (2):
p⋆ = 2p̃(1 − p̃)(1 − ωe

n
) + ((1− p̃)2 + p̃2) ωe

n
. This approximation will give us, for 0 ≤ d ≤

min(2× ω × ωr + ωe, n),

Pr[ω(e′) = d] =

(
n

d

)
(p⋆)d(1− p⋆)(n−d). (3)

33

Simulation results. We provide simulations of the distribution of the weight of the error
vector together with the distribution of the associated binomial law of parameters p⋆. These
simulations show that error vectors are more likely to have a weight close to the mean than
predicted by the binomial distribution, and that on the contrary the error is less likely to be
of large weight than if it were binomially distributed. This is illustrated on the parameter
set corresponding to HQC-1. For cryptographic purposes we are mainly interested by very
small DFR and large weight occurrences which are more likely to induce decoding errors.
These tables show that the probability of obtaining a large weight is close but smaller for the
error weight distribution of e′ rather than for the binomial approximation. This supports
our modelization and the fact that computing the decoding failure probability with this
binomial approximation permits to obtain an upper bound on the real DFR. This will be
confirmed hereafter by simulations with real weight parameters (but smaller lengths).

We consider a parameter set that corresponds to cryptographic parameters and for which
we simulate the error distribution versus the binomial approximation together with the
probability of obtaining large error weights. We computed vectors of length n and then
truncated the last l = n− n1n2 bits before measuring the Hamming weight of the vectors.

Parameter set ω ωe = ωr n n1n2 p⋆

HQC-1 66 75 17 669 17 664 0.3398

Table 9: Probability p∗ for HQC-1 parameter set

Simulation results are shown in Figure 3. We computed the weights such that 0.1%, 0.01%
and 0.001% of the vectors are of weight greater than this value, to study how often extreme
weight values occur. Results are presented table 10.

0.1% 0.01% 0.001% 0.0001%

Error vectors 6 169 6 203 6 232 6 257

Binomial approximation 6 197 6 237 6 272 6 301

Table 10: Simulated probabilities of large weight vectors for HQC-1 for the error vector
distribution and the binomial approximation

34

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 5800 5850 5900 5950 6000 6050 6100 6150 6200

O
c
c
u

re
n

c
e

s

Weight

HQC simulation
Binomial distribution

Figure 3: Comparison between error e′ generated using HQC-1 parameter set and its bino-
mial approximation

6.1.2 Upper bound for the DFR of the internal Reed-Muller code

It is only possible to obtain an exact decoding probability formula for the Reed-Solomon
codes as for Reed-Muller codes we consider a maximum-likelihood decoding for which there
is no exact formula. We provide in the following proposition a lower bound on the decoding
probability in that case.

Proposition 6.1.3 (Simple Upper Bound for the DFR of the internal code). Let p be
the transition probability of the binary symmetric channel. Then the DFR of a duplicated
Reed-Muller code of dimension 8 and minimal distance di can be upper bounded by:

pi = 255

di∑
j=di/2

(
di
j

)
pj(1− p)di−j

Proof. For any linear code C of length n, when transmitting a codeword c, the probability
that the channel makes the received word y at least as close to a word c′ = c+ x as c (for

35

x a non-zero word of C and ω(x) the weight of x) is:∑
j⩾ω(x)/2

(
ω(x)

j

)
pj(1− p)n−j.

By the union bound applied on the different non-zero codewords x of C, we obtain that the
probability of a decryption failure can thus be upper bounded by:∑

x∈C,x ̸=0

∑
j⩾ω(x)/2

(
ω(x)

j

)
pj(1− p)n−j.

There are 255 non-zero words in a [128,8,64] Reed-Muller code, 254 of weight 64 and one
of weight 128. The contribution of the weight 128 vector is smaller than the weight 64
vectors, hence by applying the previous bound to duplicated Reed-Muller codes we obtain
the result.

Better upper bound for the DFR of the internal code. The previous simple bound
pessimistically assumes that decoding fails when more than one codeword minimizes the
distance to the received vector. The following bound improves the previous one by taking
into account the fact that decoding can still succeed with probability 1/2 when exactly two
codewords minimize the distance to the received vector.

Proposition 6.1.4 (Improved Upper Bound for the DFR of the internal code). Let p be
the transition probability of the binary symmetric channel. Then the DFR of a Reed-Muller
code of dimension 8 and minimal distance di can be upper bounded by:

pi =
n∑

ω=di/2

Aωp
ω(1− p)n−ω

where

Aω = min

[(
n

ω

)
,
1

2
255

(
di
di/2

)(
di

ω − di/2

)
+ 255

di∑
j=di/2+1

(
di
j

)(
di

ω − j

)
+

1

2

(
255

2

) di/2∑
j=0

(
di/2

j

)3(
di/2

ω − di + j

)]
.

Proof. Let E be the decoding error event. Let e be the error vector.

• Let A be the event where the closest non-zero codeword c to the error is such that
d(e, c) = d(e,0) = ω(e).

• Let B be the event where the closest non-zero codeword c to the error vector is such
that d(e, c) < ω(e).

36

• Let A′ ⊂ A be the event where the closest non-zero codeword c to the error vector
is such that d(e, c) = ω(e) and such a vector is unique, meaning that for every
c′ ∈ C, c′ ̸= c, c′ ̸= 0, we have d(e, c′) > ω(e).

• Finally, let A′′ be the event that is the complement of A′ in A, meaning the event
where the closest non-zero codeword c to the error is at distance |e| from e, and there
exists at least one codeword c′, c′ ̸= c, c′ ̸= 0, such that d(e, c′) = d(e, c) = ω(e).

The probability space is partitioned as Ω = A ∪ B ∪ C = A′ ∪ A′′ ∪ B ∪ C, where C
is the complement of A ∪ B. When C occurs, the decoder always decodes correctly, i.e.
P (E|C) = 0. We therefore write:

P (E) = P (E|A′)P (A′) + P (E|A′′)P (A′′) + P (E|B)P (B)

When the event A′ occurs, the decoder chooses at random between the two closest
codewords and is correct with probability 1/2, i.e. P (E|A′) = 1/2. We have P (E|B) = 1
and writing P (E|A′′) ⩽ 1, we have:

P (Eω) ⩽
1

2
P (A′ω) + P (A′′ω) + P (Bω)

=
1

2
(P (A′ω) + P (A′′ω)) +

1

2
P (A′′ω) + P (Bω)

P (Ew) ⩽
1

2
P (Aω) +

1

2
P (A′′ω) + P (Bω) (4)

where for X = A,A′, A′′, E, the event Xω signifies the intersection of the event X with the
event “ω(e) = ω”. Now we have the straightforward union bounds:

P (Bω) ⩽ 255

di∑
j=di/2+1

(
di
j

)(
di

weight− j

)
pω(1− p)n−ω (5)

with n = 2di the length of the inner code, and where we use the convention that a binomial
coefficient

(
ℓ
k

)
= 0 whenever k < 0 or k > ℓ.

P (Aω) ⩽ 255

(
di
di/2

)(
di

ω − di/2

)
pω(1− p)n−ω (6)

and it remains to find an upper bound on P (A′′). We have:

P (A′′) ⩽
∑
c,c′

P (Ac,c′)

where the sum is over pairs of distinct non-zero codewords and where:

Ac,c′ = {d(e, c) = d(e, c′) = ω(e)}

37

This event is equivalent to the error meeting the supports of c and c′ on exactly half
their coordinates. All codewords except the all-one vector have weight di, and any two
codewords of weight di either have non-intersecting supports or intersect in exactly d/2
positions. P (Ac,c′) is largest when c and c′ have weight d and non-zero intersection. In this
case we have:

P (Aω
c,c′) =

di/2∑
j=0

(
di/2

j

)3(
di/2

ω − di + j

)
pω(1− p)n−ω.

Hence,

P (A′′ω) ⩽
∑
c,c′

P (Ac,c′) ⩽

(
255

2

) di/2∑
j=0

(
di/2

j

)3(
di/2

ω − di + j

)
pω(1− p)n−ω. (7)

Plugging 6, 5 and 7 into 4 we obtain the result.

The previous formula permits to obtain a lower bound on the decoding probability.
When the error rate gets smaller, the bound becomes closer to the real value of the decoding
probability. For cryptographic parameters the approximation is less precise, which means
that the DFR obtained will be conservative compared to what happens in practice.

Simulation results. We performed simulations to compare the real decryption failure rate
with the theoretical one from proposition 6.1.3 for [512, 8, 256] and [640, 8, 320] duplicated
Reed-Muller codes using p⋆ values from actual parameters. Simulation results are presented
table 11.

Security level p⋆ Reed-Muller code DFR from 6.1.4 Observed DFR

NIST-1 0.3398 [384, 8, 192] -10.79 -10.96

NIST-3 0.3618 [640, 8, 320] -14.14 -14.39

NIST-5 0.3725 [640, 8, 320] -11.30 -11.48

Table 11: Comparison between the observed Decryption Failure Rate and the formula from
proposition 6.1.3. Results are presented as log2(DFR).

6.1.3 Decoding failure rate analysis

Using the lower bound pi on the decoding probability of the Reed-Muller codes given in
Section 6.1.2, one can deduce the DFR of the concatenated code used in HQC.

Theorem 6.1 (DFR of the concatenated code). The DFR of the concatenated code using a
Reed-Solomon code [ne, ke, de]F256 as the external code and a Reed-Muller code as the internal
code can be upper bounded by:

38

ne∑
l=δe+1

(
ne

l

)
pli(1− pi)

ne−l

where de = 2δe + 1 and pi is defined as in proposition 6.1.3.

Simulation results. In Figure 4, we tested the DFR of the concatenated codes against
both symmetric binary channels and HQC vectors, and compared the results with the
theoretical value obtained using Proposition 6.1.3 and Theorem 6.1.

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 32 32.5 33 33.5 34 34.5 35 35.5 36

D
F

R

NRS

DFR comparison

Theoretical
Binomial

HQC

Figure 4: Comparison between the DFR from Theorem 6.1 (Theoretical) and the actual
DFR of concatenated codes against approximation by a binary symmetric channel (Bino-
mial) and against HQC error vectors (HQC). Parameters simulated are derived from those
of HQC for NIST-1 security level: ω = 66, ωr = ωe = 75, a [384, 8, 192] duplicated Reed-
Muller code for internal code and a [NRS, 16] Reed-Solomon code for external code.

39

6.2 Security proof

Hereafter, we present the approach used to prove the security of HQC. We provide an
IND-CPA security proof for HQC-PKE in Section 6.2.1. Then, we prove the IND-CCA2 secu-
rity of HQC-KEM using the salted Fujisaki-Okamoto transformation with implicit rejection
(SFO̸⊥) [14, 22, 18] in Section 6.2.2. For the sake of simplicity, we assume in Sections 6.2.1
and 6.2.2 that the vectors r1, r2 and e are generated using SampleFixedWeightVect$ instead
of SampleFixedWeightVect (see Section 3.2). Finally, we show in Section 6.2.3 that replacing
SampleFixedWeightVect$ with SampleFixedWeightVect has a minimal impact on the validity
of the aforementioned security proofs.

6.2.1 IND-CPA security

In this section we prove the IND-CPA security of the HQC-PKE scheme. Let b1 = h(1) mod
2, b2 = ω+ b1×ω mod 2, b3 = ωr+ b1×ωr mod 2 = ωe+ b1×ωe mod 2 and ℓ = n−n1×n2.

Theorem 6.2. For any IND-CPA adversary A against the HQC-PKE scheme, there exists
adversaries B1 and B2 such that:

AdvIND-CPA
HQC-PKE(A) ≤ Adv2-DQCSD-P(B1) + Adv3-DQCSD-PT(B2). (8)

Proof of Theorem 6.2. We build a sequence of games transitioning from the PKE.IND-CPA
game to a similar game in which the distribution of cPKE is independent of b and show that
if the adversary manages to distinguish one from the other, then one can build a simula-
tor breaking the 2-DQCSD-P assumption or the 3-DQCSD-PT assumption. For simplicity,
we introduce a small variation in both distinguishers regarding the encryption key ekPKE.
Instead of using as input the seed seedPKE.ek used to generate h and subsequently H, we
directly use the matrix H as input of the distinguishers.

Game1: This game is the PKE.IND-CPA game following the protocol.

Game1(λ)

1. seedPKE ←$ B|seed|

2. (ekPKE, dkPKE)← HQC-PKE.Keygen(seedPKE)
3. (m0,m1)← ACHOOSE(ekPKE)

4. b←$ {0, 1}
5. θ ←$ B|θ|, cPKE ← HQC-PKE.Encrypt(ekPKE,mb, θ)

6. b′ ← AGUESS(ekPKE, cPKE)

7. return (b = b′)

Game2: In this game, we forget the decryption key dkPKE, take s at random with parity b2
and then follow the protocol as in Game1 for the remaining steps:

40

Game2(λ)

1. seedPKE ←$ B|seed|

2. 1. (ekPKE, dkPKE)← HQC-PKE.Keygen(seedPKE)
2. s←$ Fn

2,b2

3. (ekPKE, dkPKE)← ((seedPKE.ek, s),0)

3. (m0,m1)← ACHOOSE(ekPKE)

4. b←$ {0, 1}
5. θ ←$ B|θ|, cPKE ← HQC-PKE.Encrypt(ekPKE,mb, θ)

6. b′ ← AGUESS(ekPKE, cPKE)

7. return (b = b′)

Suppose that an adversary B1 is able to distinguish Game1 from Game2 with advantage ϵ
for some security parameter λ. Then one can build an algorithm Dλ

2-DQCSD-P solving the
2-DQCSD-P problem with the same advantage ϵ.

Dλ
2-DQCSD-P (H, s)

1. Compute h from H = (In rot(h))

2. Compute ekPKE ← (h, s)

3. Get (m0,m1)← B1,CHOOSE(ekPKE)

4. Sample b←$ {0, 1} and θ ←$ B|θ|

5. Compute cPKE ← HQC-PKE.Encrypt(ekPKE,mb, θ)

6. Get b′ ← B1,GUESS(ekPKE, cPKE)
7. If b′ = Game1, output 2-QCSD-P(n, ω, b1, b2) distribution

8. If b′ = Game2, output U(Fn×2n
2,b1

× Fn
2,b2

) distribution

Note that ekPKE is sampled from the 2-QCSD-P(n, ω, b1, b2) distribution in Game1 while it is
sampled from the uniform distribution over Fn×2n

2,b1
×Fn

2,b2
in Game2 therefore the advantage

of Dλ
2-DQCSD-P is the same as the advantage of B1.

Game3: In this game, instead of picking correctly weighted r1, r2, e, the simulator picks
random vectors in Fn

2 thus generating a random ciphertext with expected parity.

41

Game3(λ)

1. seedPKE ←$ B|seed|

2. 1. (ekPKE, dkPKE)← HQC-PKE.Keygen(seedPKE)
2. s←$ Fn

2,b2

3. (ekPKE, dkPKE)← ((seedPKE.ek, s),0)

3. (m0,m1)← ACHOOSE(ekPKE)

4. b←$ {0, 1}

5. 1. e←$ Fn
2 , (r1, r2)←$ Fn

2,ωr
× Fn

2,ωr

2. u← r1 + hr2

3. v← C.Encode(mb) + Truncate(s · r2 + e, ℓ)

4. cPKE ← (u,v)

6. b′ ← AGUESS(ekPKE, cPKE)

7. return (b = b′)

Suppose that an adversary B2 is able to distinguish Game2 from Game3 with advantage ϵ
for some security parameter λ. Then one can build an algorithm Dλ

3-DQCSD-PT solving the
3-DQCSD-PT problem with the same advantage ϵ.

Dλ
3-DQCSD-PT(H, (u,v))

1. Compute h and s from H =

(
In 0 rot(h)
0 In rot(s)

)
2. Compute ekPKE ← (h, s)

3. Get (m0,m1)← B2,CHOOSE(ekPKE)

4. Sample b←$ {0, 1}
5. Compute cPKE ← (u, C.Encode(mb) + v)

6. Get b′ ← B2,GUESS(ekPKE, cPKE)
7. If b′ = Game2, output 3-QCSD-PT (n, ω, b1, b2, b3, ℓ) distribution

8. If b′ = Game3, output U(F2n×3n
2,b1,b2

× (Fn
2,b3
× Fn−ℓ

2)) distribution

As we have:(
u,v−C.Encode(mb)

)⊤
=

(
(In 0 rot(h)) ·(r1 e r2)

⊤ ,Truncate((0 In rot(s)) ·(r1 e r2)
⊤ , ℓ)

)
the difference between Game2 and Game3 is that in the former((

In 0 rot(h)
0 In rot(s)

)
, (u,v − C.Encode(mb))

)
follows the 3-QCSD-PT (n, ω, b1, b2, b3, ℓ) distribution while in the latter it follows a uniform
distribution with parity over F2n×3n

2,b1,b2
× (Fn

2,b3
× Fn−ℓ

2). Hence, the advantage of Dλ
3-DQCSD-PT

is the same as the advantage of B2.

42

One can see that in Game3, the distribution of cPKE is independent of b as u is computed
independently of b and v is masked by the random vector s·r2+e hence Pr[Game3 ⇒ 1] = 1

2
.

As a result, the advantage of any IND-CPA adversary A against the HQC-PKE scheme is
bounded by:

AdvIND-CPA
HQC-PKE(A) ≤ Adv2-DQCSD-P(B1) + Adv3-DQCSD-PT(B2).

6.2.2 IND-CCA2 security

HQC-KEM is obtained by applying the salted Fujisaki–Okamoto (SFO̸⊥) [14, 22, 18] trans-
form to HQC-PKE. In this section, we discuss the IND-CCA2 security of HQC-KEM.

Definition 6.2.1 (δ-correct PKE [22]). A PKE = (PKE.Keygen,PKE.Encrypt,PKE.Decrypt)
is δ-correct if:

E
(
max
m∈M

Pr [PKE.Decrypt(dkPKE, cPKE) ̸= m | cPKE ← PKE.Encrypt(ekPKE,m)]

)
≤ δ. (9)

where the expectation is taken over (ekPKE, dkPKE)← PKE.Keygen(param).

Definition 6.2.2 (δ-correct KEM [22]). A KEM = (KEM.Keygen,KEM.Encaps,KEM.Decaps)
is δ-correct if:

Pr =

[
KEM.Decaps(dkKEM, cKEM) ̸= K

∣∣∣∣ (ekKEM, dkKEM)← KEM.Keygen();
(K, cKEM)← KEM.Encaps(ekKEM)

]
≤ δ. (10)

In HQC-PKE the failure to decrypt a ciphertext cPKE occurs if and only if

ω (x · r2 − r1 · y + e) > ∆.

Note that the aforementioned equation does not depend on the message m. Therefore, the
probability in Equation 9 simplifies to

Pr [PKE.Decrypt(dkPKE, cPKE) ̸= m | cPKE ← PKE.Encrypt(ekPKE,m)] ≤ δ. (11)

This probability is equivalent to the probability that is analyzed in section 6.1 namely:

Pr


ω (x · r2 − r1 · y + e) > ∆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ctxPKE.dk ← XOF.Init(seedPKE.dk);
(ctxPKE.dk,y)← SampleFixedWeightVect$(ctxPKE.dk,Rω);
(ctxPKE.dk,x)← SampleFixedWeightVect$(ctxPKE.dk,Rω);
ctxθ ← XOF.Init(θ);
(ctxθ, r2)← SampleFixedWeightVect$(ctxθ,Rωr

);
(ctxθ, e)← SampleFixedWeightVect$(ctxθ,Rωe);
(ctxθ, r1)← SampleFixedWeightVect$(ctxθ,Rωr

)


≤ δ. (12)

The next theorem shows that HQC-KEM achieves IND-CCA2 security in the random-
oracle model, with its concrete advantage bound obtained by combining the estimates of
Theorem 13 from [18] and Theorem 6.2.

43

Theorem 6.3. If HQC-PKE is δ correct, for any IND-CCA2 adversary A against the
HQC-KEM scheme issuing at most qRO queries to G and qD queries to the HQC-KEM.Decaps
oracle, there exists adversaries B1 and B2 such that:

AdvIND-CCA2
HQC-KEM(A) ≤

1

2|k| · 2|salt|
+

3qRO

2|k|
+ (qRO + qD) · δ

+ 2 · (Adv2-DQCSD-P(B1) + Adv3-DQCSD-PT(B2)) .
(13)

6.2.3 Security proof with non uniform randomness sampling

In this section, we show that replacing the uniform sampling from SampleFixedWeightVect$
with the biased distribution from SampleFixedWeightVect has a minimal impact on the
IND-CCA2 security of HQC-KEM following the approach described in [36].

Proposition 6.2.1 ([36]). When x← randbits(B, prng) behaves as a random oracle which
yields uniformly distributed integers 0 ≤ x < 2B for any integer B > 0, one has:

w−1∏
i=0

(
1−

ni

2B

)
= τωmin ≤

Pr [e | e← SampleFixedWeightVect(ctxe,Rω)]

Pr [e | e← SampleFixedWeightVect$(ctxe,Rω)]
≤ τωmax =

w−1∏
i=0

(
1 +

(n− i)− ni

2B

)
(14)

where ni = 2B mod (n− i) for all i, 0 ≤ i < w.

For HQC-KEM, (τωmin, τ
ω
max) and (τωr

min, τ
ωr
max) are very close to 1 as shown in Table 12.

Security n w τωmin τωmax ωr = ωe τωr
min τωr

max

NIST-1 17,669 66 0.99987 1.00014 75 0.99985 1.00015

NIST-3 35,851 100 0.99958 1.00041 114 0.99952 1.00047

NIST-5 57,637 131 0.99913 1.00089 149 0.99901 1.00101

Table 12: Bias between the uniform distribution and the output of Algorithm
SampleFixedWeightVect (using B = 32) for the vectors of weight ω and ωr = ωe.

The following lemma (Equation 5 from [36]) shows that the advantage of any adversary
when a vector e of weight w is sampled following Algorithm SampleFixedWeightVect instead
of the uniform distribution cannot increase by a factor larger than τωmax.
Lemma 6.4. For any real-valued random variable V : Rω → R, one has:
∑

e∈Rω

Pr [e | e← SampleFixedWeightVect(ctxe,Rω)]V (e) ≤ τωmax ·
∑

e∈Rω

Pr [e | e← SampleFixedWeightVect$(ctxe,Rω)]V (e).

Impact of the security proof. Following [36], we explain how to modify the Equation 13
to take into account the non uniform randomness sampling:

44

• The first two terms 1
2|k|·2|salt| and 3qRO

2|k|
remain unchanged since they are independent

of the output of the sampler ;

• The third term (qRO + qD) · δ is related to the δ-correctness of the scheme. When
(x,y) and (r1, r2, e) are sampled using SampleFixedWeightVect rather than the uniform
distribution, δ must be such that:

Pr


ω (x · r2 − r1 · y + e) > ∆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ctxPKE.dk ← XOF.Init(seedPKE.dk);
(ctxPKE.dk,y)← SampleFixedWeightVect$(ctxPKE.dk,Rω);
(ctxPKE.dk,x)← SampleFixedWeightVect$(ctxPKE.dk,Rω);
ctxθ ← XOF.Init(θ);
(ctxθ, r2)← SampleFixedWeightVect(ctxθ,Rωr

);
(ctxθ, e)← SampleFixedWeightVect(ctxθ,Rωe

);
(ctxθ, r1)← SampleFixedWeightVect(ctxθ,Rωr

)


≤ δ.

Using Lemma 6.4, the above probability increases by at most (τωr
max)

3 ;

• The fourth term 2 · (Adv2-DQCSD-P(B1) + Adv3-DQCSD-PT(B2)) must be adjusted to ac-
count for a slight change in the sequence of games. One can add a game Game0 where
the small Hamming weight vectors are sampled according to the biased distribution
rather than uniformly at random before resuming with Game1. Using Lemma 6.4, the
advantage related to this term increases by a factor at most (τωr

max)
3.

6.3 Known attacks

Attacks against Syndrome Decoding. The practical complexity of the SD problem for
the Hamming metric has been widely studied for more than 50 years. Most efficient attacks
are based on Information Set Decoding, a technique first introduced by Prange in 1962 [33]
and improved later by Stern [37], then Dumer [12]. Recent works [29, 5, 30] suggest a
complexity of order 2cω(1+negl(1)), for some constant c. A particular work focusing on the
regime ω = negl(n) confirms this formula, with a close dependence between c and the rate
k/n of the code being used [11].

Specific structural attacks. Quasi-cyclic codes have a special structure which may
potentially open the door to specific structural attacks. A first generic attack is the DOOM
attack [35] which because of cyclicity implies a gain of O(

√
n) (when the gain is in O(n) for

MDPC codes, since the code is generated by a small weight vector basis). It is also possible
to consider attacks on the form of the polynomial generating the cyclic structure. Such
attacks have been studied in [21, 27, 35], and are especially efficient when the polynomial
xn− 1 has many low degree factors. These attacks become inefficient as soon as xn− 1 has
only two irreducible factors of the form (x− 1) and xn−1 + xn−2 + ...+ x+ 1, which is the
case when n is prime and q generates the multiplicative group (Z/nZ)∗. Such numbers are
known up to very large values. We consider such primitive n for our parameters.

Security of the 2-DQCSD-P and 3-DQCSD-PT problems. Concerning the security of
the 2-DQCSD-P problem, there is one security bit lost in the reduction to the 2-DQCSD

45

problem. Regarding the security of the 3-DQCSD-PT problem, whenever the number of
truncated positions is very small compared to the block length n, the impact on the security
is negligible with respect to the 3-DQCSD problem since the best attack is the ISD attack.
Moreover since the truncation breaks the quasi-cyclicity, it also weakens the advantage of
quasi-cyclicity for the attacker.

Choice of parameters. We proposed different sets of parameters in Section 4 that fit
security levels 1, 3 and 5, as defined by NIST. The quantum-safe security is obtained by
dividing the security bits by two (taking the square root of the complexity) [8]. Best known
attacks include the works from [10, 9, 13, 29, 5, 30] and for quantum attacks, the work
of [8]. In the setting ω = O (

√
n), best known attacks have a complexity in 2−t ln(1−R)(1+o(1))

where t = O(ω) and R is the rate of the code [11]. In our configuration, we have t = 2ω
and R = 1/2 for the reduction to the 2-DQCSD-P problem, and t = 3ωr and R = 1/3
for the 3-DQCSD-PT problem. By taking into account the DOOM attack [35], and also
the fact that we consider balanced vectors (x,y) and (r1, e, r2) for the attack (which costs
only a very small factor, since random words have a good probability to be balanced on
each block), we need to divide this complexity by approximately

√
n (up to polylog factor).

The term o(1) is respectively log
((

n
ω

)2
/
(
2n
2ω

))
and log

((
n
ωr

)3
/
(
3n
3ωr

))
for the 2-DQCSD-P and

3-DQCSD-PT problems.

46

7 Advantages and Limitations

7.1 Advantages

The HQC scheme features several advantages:

• Immunity against attacks aiming at recovering the hidden structure of the code being
used contrarily to many code-based cryptosystems;

• A security reduction to a well-understood problem on coding theory (the Quasi-Cyclic
Syndrome Decoding problem) along with a precise estimate of its decoding failure rate;

• Efficient implementations based on classical decoding algorithms;

• Reasonably small ciphertext and key sizes.

7.2 Limitations

The HQC scheme has also some limitations:

• HQC-PKE has a low encryption rate hence encrypting large plaintexts require to in-
crease the parameters;

• In contrast with lattices and the Ring Learning With Errors problem, code-based
cryptography does not benefit from search to decision reduction for structured codes;

• In comparison with some lattice-based KEM such as ML-KEM, HQC features larger
ciphertext and key sizes as well as less efficient implementations.

47

References
[1] Carlos Aguilar-Melchor, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit,

and Gilles Zémor. Efficient encryption from random quasi-cyclic codes. IEEE Trans-
actions on Information Theory, 64(5):3927–3943, 2018.

[2] Francesco Antognazza, Alessandro Barenghi, Gerardo Pelosi, and Ruggero Susella. A
High Efficiency Hardware Design for the Post-Quantum KEM HQC. In 2024 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), pages
431–441. IEEE, 2024.

[3] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant
input locality. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
92–110. Springer, Berlin, Heidelberg, August 2007.

[4] Nicolas Aragon, Philippe Gaborit, and Gilles Zémor. HQC-RMRS, an instantiation of
the HQC encryption framework with a more efficient auxiliary error-correcting code.
https://arxiv.org/abs/2005.10741.

[5] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random
binary linear codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237
of LNCS, pages 520–536. Springer, Berlin, Heidelberg, April 2012.

[6] Elwyn Berlekamp. Algebraic coding theory. World Scientific, 1968.

[7] Elwyn R Berlekamp, Robert J McEliece, and Henk CA van Tilborg. On the in-
herent intractability of certain coding problems. IEEE Transactions on Informa-
tion Theory, 24(3):384–386, 1978. http://authors.library.caltech.edu/5607/1/
BERieeetit78.pdf.

[8] Daniel J Bernstein. Grover vs. McEliece. In Post-Quantum Cryptography, pages 73–80.
Springer, 2010. https://cr.yp.to/codes/grovercode-20091123.pdf.

[9] Daniel J Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending the
McEliece cryptosystem. In Post-Quantum Cryptography, pages 31–46. Springer, 2008.
https://cr.yp.to/codes/mceliece-20080807.pdf.

[10] Anne Canteaut and Florent Chabaud. A new algorithm for finding minimum weight
words in a linear code: application to McEliece cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Transactions on Information Theory, 44(1):367–378, 1998.
http://ieeexplore.ieee.org/document/651067/.

[11] Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set decoding for a
sub-linear error weight. In Tsuyoshi Takagi, editor, Post-Quantum Cryptography - 7th

48

https://arxiv.org/abs/2005.10741
http://authors.library.caltech.edu/5607/1/BERieeetit78.pdf
http://authors.library.caltech.edu/5607/1/BERieeetit78.pdf
https://cr.yp.to/codes/grovercode-20091123.pdf
https://cr.yp.to/codes/mceliece-20080807.pdf
http://ieeexplore.ieee.org/document/651067/

International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Pro-
ceedings, volume 9606 of Lecture Notes in Computer Science, pages 144–161. Springer,
2016. https://hal.inria.fr/hal-01244886.

[12] Ilya Dumer. On minimum distance decoding of linear codes. In Proc.
5th Joint Soviet-Swedish Int. Workshop Inform. Theory, pages 50–52, 1991.
https://www.researchgate.net/publication/296573348_On_minimum_distance_
decoding_of_linear_codes.

[13] Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-based
cryptosystems. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS,
pages 88–105. Springer, Berlin, Heidelberg, December 2009.

[14] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and sym-
metric encryption schemes. In Michael J. Wiener, editor, CRYPTO’99, volume 1666
of LNCS, pages 537–554. Springer, Berlin, Heidelberg, August 1999.

[15] Philippe Gaborit. Shorter keys for code based cryptography. In Proceedings of the
2005 International Workshop on Coding and Cryptography (WCC 2005), pages 81–91,
2005. http://www.unilim.fr/pages_perso/philippe.gaborit/shortIC.ps.

[16] Philippe Gaborit and Marc Girault. Lightweight code-based identification and sig-
nature. In 2007 IEEE International Symposium on Information Theory, pages 191–
195. IEEE, 2007. https://www.unilim.fr/pages_perso/philippe.gaborit/isit_
short_rev.pdf.

[17] Shuhong Gao and Todd Mateer. Additive fast Fourier transforms over finite fields.
IEEE Transactions on Information Theory, 56(12):6265–6272, 2010.

[18] Lewis Glabush, Kathrin Hövelmanns, and Douglas Stebila. Tight Multi-challenge Secu-
rity Reductions for Key Encapsulation Mechanisms. Cryptology ePrint Archive, Paper
2025/343, 2025. https://eprint.iacr.org/2025/343.

[19] Danilo Gligoroski. PQC forum, official comment on BIKE submission. NIST
PQC forum, December 2017. https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/round-1/official-comments/
BIKE-official-comment.pdf.

[20] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson,
and Robin Leander Schröder. Don’t reject this: Key-recovery timing attacks due to
rejection-sampling in HQC and BIKE. IACR TCHES, 2022(3):223–263, 2022.

[21] Qian Guo, Thomas Johansson, and Carl Löndahl. A new algorithm for solving
Ring-LPN with a reducible polynomial. IEEE Transactions on Information Theory,
61(11):6204–6212, 2015. https://arxiv.org/abs/1409.0472.

49

https://hal.inria.fr/hal-01244886
https://www.researchgate.net/publication/296573348_On_minimum_distance_decoding_of_linear_codes
https://www.researchgate.net/publication/296573348_On_minimum_distance_decoding_of_linear_codes
http://www.unilim.fr/pages_perso/philippe.gaborit/shortIC.ps
https://www.unilim.fr/pages_perso/philippe.gaborit/isit_short_rev.pdf
https://www.unilim.fr/pages_perso/philippe.gaborit/isit_short_rev.pdf
https://eprint.iacr.org/2025/343
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/BIKE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/BIKE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/BIKE-official-comment.pdf
https://arxiv.org/abs/1409.0472

[22] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
Fujisaki-Okamoto transformation. In Theory of Cryptography Conference, pages 341–
371. Springer, 2017.

[23] W Cary Huffman and Vera Pless. Fundamentals of error-correcting
codes. Cambridge university press, 2010. https://www.amazon.fr/
Fundamentals-Error-Correcting-Codes-Cary-Huffman/dp/0521131707.

[24] Shu Lin and Daniel J Costello. Error control coding, volume 2. Prentice Hall Englewood
Cliffs, 2004.

[25] Zhen Liu and Yanbin Pan. PQC forum, official comment on HQC submission. NIST
PQC forum, January 2018. https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/round-1/official-comments/
HQC-official-comment.pdf.

[26] Zhen Liu, Yanbin Pan, and Tianyuan Xie. Breaking the hardness assumption and IND-
CPA security of HQC submitted to NIST PQC project. In International Conference
on Cryptology and Network Security, pages 344–356. Springer, 2018.

[27] Carl Löndahl, Thomas Johansson, Masoumeh Koochak Shooshtari, Mahmoud
Ahmadian-Attari, and Mohammad Reza Aref. Squaring attacks on McEliece public-
key cryptosystems using quasi-cyclic codes of even dimension. Designs, Codes
and Cryptography, 80(2):359–377, 2016. https://link.springer.com/article/10.
1007/s10623-015-0099-x.

[28] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-
correcting codes, volume 16. Elsevier, 1977.

[29] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear
codes in Õ(20.054n). In Asiacrypt, volume 7073, pages 107–124. Springer, 2011. https:
//link.springer.com/chapter/10.1007/978-3-642-25385-0_6.

[30] Alexander May and Ilya Ozerov. On computing nearest neighbors with applications
to decoding of binary linear codes. In EUROCRYPT (1), pages 203–228, 2015. http:
//www.cits.rub.de/imperia/md/content/may/paper/codes.pdf.

[31] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo SLM Barreto.
MDPC-McEliece: New McEliece variants from moderate density parity-check codes.
In Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on,
pages 2069–2073. IEEE, 2013. https://eprint.iacr.org/2012/409.pdf.

[32] Ray Perlner. Security strength categories for Code Based Crypto. Public comment on
NIST pqc-forum mailing list, 2021.

50

https://www.amazon.fr/Fundamentals-Error-Correcting-Codes-Cary-Huffman/dp/0521131707
https://www.amazon.fr/Fundamentals-Error-Correcting-Codes-Cary-Huffman/dp/0521131707
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/HQC-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/HQC-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/HQC-official-comment.pdf
https://link.springer.com/article/10.1007/s10623-015-0099-x
https://link.springer.com/article/10.1007/s10623-015-0099-x
https://link.springer.com/chapter/10.1007/978-3-642-25385-0_6
https://link.springer.com/chapter/10.1007/978-3-642-25385-0_6
http://www.cits.rub.de/imperia/md/content/may/paper/codes.pdf
http://www.cits.rub.de/imperia/md/content/may/paper/codes.pdf
https://eprint.iacr.org/2012/409.pdf

[33] Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory, 8(5):5–9, 1962. http://ieeexplore.ieee.org/document/
1057777/.

[34] Markku-Juhani O. Saarinen. IND-CCA2 issue in HQC. Public comment on NIST
pqc-forum mailing list, 2025.

[35] Nicolas Sendrier. Decoding one out of many. In International Workshop on Post-
Quantum Cryptography, pages 51–67. Springer, 2011. https://eprint.iacr.org/
2011/367.pdf.

[36] Nicolas Sendrier. Secure Sampling of Constant Weight Words – Application to BIKE.
Cryptology ePrint Archive, Report 2021/1631, 2021. https://eprint.iacr.org/
2021/1631.

[37] Jacques Stern. A method for finding codewords of small weight. In International
Colloquium on Coding Theory and Applications, pages 106–113. Springer, 1988. https:
//link.springer.com/chapter/10.1007/BFb0019850.

51

http://ieeexplore.ieee.org/document/1057777/
http://ieeexplore.ieee.org/document/1057777/
https://eprint.iacr.org/2011/367.pdf
https://eprint.iacr.org/2011/367.pdf
https://eprint.iacr.org/2021/1631
https://eprint.iacr.org/2021/1631
https://link.springer.com/chapter/10.1007/BFb0019850
https://link.springer.com/chapter/10.1007/BFb0019850

	Introduction
	Preliminaries
	Notations
	Coding theory
	Security assumptions
	Security definitions

	Specifications
	XOF and Hash functions
	Vector sampling
	Vector multiplication
	Concatenated Reed-Muller and Reed-Solomon codes
	HQC-PKE
	HQC-KEM

	Parameters and Sizes
	Parameter sets
	Ciphertext and key sizes

	Performance Analysis
	Reference implementation
	Optimized implementation
	Known Answer Test values

	Security Analysis
	Decoding Failure Rate analysis
	Security proof
	Known attacks

	Advantages and Limitations
	Advantages
	Limitations

	References

